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ABSTRACT

This paper is composed of two parts. In the first part closedness and

compactness results are given for a sequence of nonlinear elliptic operators,

of the form

Lu 2 (-1)ID A (X,uVu,.. ,V u)

'with monotone type assumptions on'-the- A--'sa. These results are then used in

the second part to derive existence theorems for a quasi variational

inequality related to some questions from nonlinear heat flow. This quasi

variational inequality involves a second order operator as above and an

* Iimplicit obstacle of the Signorini type on the boundary.
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SIGNIFICANCE AND EXPLANATION

Quasi variational problems are characterized by the fact that the

constraints are not given in advance. Typically, given a differential

operator T acting on some function space V and a varying constraints set

Q(u) C V, one asks for u e V satisfying

u e Q(u)

(Tu,u - v) 4 0 for all v e Q(u)

Variational inequalities correspond to Q(u) H Q. Such quasi variational

inequalities were introduced by Bensoussan and Lions for the study of some

stochastic optimal control problems.

The quasi variational inequality considered in this paper is related to

nonlinear heat flow. The constraints arise in the following way: the

boundary temperature is required to remain at least equal to the exterior

temperature, while the latter itself is influenced by the heat flux crossing

the boundary. Existence theorems for stationary solutions are established

under rather general nonlinear constitutive assumptions. They extend and

sharpen previously known results relative to the linear case. One feature of

this problem is the dependence of the constraints set on the derivatives of

the temperature at the boundary. This precludes the use in the nonlinear case

of the standard approach for solving quasi variational inequalities.
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0. INTRODUCTION

The purpose of this paper is to study the existence of solutions for a second order

nonlinear elliptic equation with implicit Signorini type boundary conditions. The equation

we consider is of the form

(0.1) Lu S - ~ Di A(x,u,Vu) + A(x,u,Vu) = f in S
i-i

S a bounded open set of N with boundary r. The boundary conditions are the

following:

(0.2) u P v(u) on r

(0.3) YaU ) 0 on r

(0.4) yau (u- V(u)) = 0 on r

where Y(u), the obstacle on r, will be defined by means of an integro-differential

operator 7 on r'. ya denotes the conormal derivative associated to L:

N
(0.5) Yau Ai(x,u,Vu)Vi

i= 1

with Vi the components of the unit exterior normal to r.

Equations and boundary conditions of this kind are related to some questions of

nonlinear heat flow (see [21]). Consider a homogeneous rigid material il and let u
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denote the temn~eratare inside 2,s the heat prodiuction and i the heat flIux. P~np

wishes to ILeep u on I'at least ecrual to some reference temperature h (e.q. the

exterior temperature). For that purpose we asstime that nT~vt the flux across

vanishes whenever u > h and is nonpositive whenever u =h. The first law of

thermodynamtics requires, for a stationary solution,

divq =s in Q.

Thus, for constitutive assumptions of the form

CT o.(u,Vu)

and s = s1 (u,Vu) + s 2xW, we obtain a problem as (0.1)-(0.4) with T~u) h (thes

term h-ere is partly for mathematical convenience; see section 2.5.e). Peplacinka now

h(x) above by an exnre:ssion T(u)(x) which mav depend on u or its derivatives means.

that one taltes into account a possible variation of the reference temperat-ure. This

variation will be assumed to he proportional to the average flux Cq-v -y a u across I':

(0.6) 'i~u)(x) = hix) - f Y u (y),P(y) dT
ra

or more generally

(0.7) y(u_)(x) = h(x) r .3u (Y) %(x'y) (F

where 1, and are given on r. A depndence lik- (n.7) occurs for instance in tH-.

following situation: let h~ e surroundedI by anothepr mate-riail S ani assrep t-hat

a nd s atisfv the Fo~iripr law; then th)e Pytprinr teprAture on r is nivenl t1 (f).7)

with ix,y) a crren' n'to agsociatod to .2 F irjlar roh ipms may arirnc in fliAj

nechanics, when Or'e d AIR with vs -nPr-eahipn .I-ranes (Spe?,0)

rFxisterice result.s f-~r prohlpm (0l.1)-0f.4), with,: of tl.e forr. (P , l iner-

an-i, f in T(j were $,vane 
1
wlv- Insco [12,?nAl when 1 s~, i-

Pocnarrio-nolcetta [2" when, thp norm of ; (in H 12I!')) is; s;Ifi(jcje-lv snnll. o'

purn-p her- i" to !tuIip" no'linpar rA-:P, in parqirilar that one corrpsnondinv in tl'e

.ih~~v -r& * onrtitlt iv,- ,arrint ens of t"e form



_K uV
S= -K(IVul)3x.

I

with, for instance, K(r) r 
p- 2

, 1 < p < _. The coefficients A (x,u,Vu) and
1

A 0(x,u,Vu) of L will be assumed to verify either the usual (full) monotonicity

conditions or conditions which are similar to but slightly stronger than the Leray-Lions

conditions. These conditions involve among other things an exponent 1 < p <

(polynomial growth, coercivity, ... ). We will prove the existence of solutions to problem

(0.1)-(0.4), with T of the form (0.6) and f in L
p 

(E) (or more generally in a

subspace (-J (;) of the order dual of W 1'P()), when either 1 < p < 2 or p ) 2 and
p 0

the negative part of ; has a sufficiently small norm (in W - (/p'P(r)). A similar result

holds for an obstacle of the form (0.7).

Our general approach is classical in the theory of quasi variational inequalities in

that the given problem is transformed into a fixed point eauation via the resolution of an

auxiliary variational inequality (the so-called variational selection). (For the theory

and applications of quasi variational inequalities, see e.g. [1]). However a difficulty

arises here due to the fact that T(u) explicitly contains the conormal derivative y u

which, as is well-known, can only be defined via Green's formula under certain informations

on Lu (see section 2.1). This difficulty is easily overcome in the linear case by

working ;n the space

H 1() = iv f 4 (Q); Lv c L 2 o)1
L

(cf. 2,12,21)1, but it is not clear how to adapt this method to the nonlinear case (for

example, what are then the properties of the set corresponding to HL (S) ?). To get around

this difficulty, we consider the whole integral in Y(u) as the parameter leading to the

construction of the variational selection. (Another possibility is indicated in section

2.S.c, which iS inspired by the i~riational formulation of the Neumann problems). The

monotone case can then be treatei rather simply. The problem is reduced to a fixed point

eniation in R when 1h, the form (.6), in W 1-1/p'P(P) when T has the form

(0.7). In. tie r.)n!monoton' Cdo', in order to maintain a minimum of convexlty, we are lead

to replace :n tYe a)u.iliair, variational inequality the nprator L by an operator Lw

-3 -
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obtained from L by freezing some of its terms (as e.g. in (2)). A second parameter

is thus introduced in the variational selection. To study then the dependence of the

solutions of the auxiliary variational inequality with respect to w, we apply general

closedness and compactness theorems relative to the convergence of a sequence of nonlinear

elliptic operators of the form

(0.8) 1 (-1) IJD A (x,u,Vu .... v mu)

These theorems, which are proved in the first part of this paper and which seem to be of

some interest in their own right, are somehow related to various recent results about

stability, G-convergence, r-convergence, ... (see the references in [61).

The authors wish to thank J. L. Lions for several stimulating comments about a

preliminary version of this paper, and P. Villagio for his remarks about the physical

meaning of (0.1)-(0.4). This research was started while the second author was visitina the

University of Roma through a grant of the C.N.R.

The plan is as follows:

1. Closedness and compactness theorems

1.1. Preliminaries

1.2. Closedness theorems

1.3. Compactness theorem

2. A quasi-variational inequality with obstacle on the boundary

2.1. Conormal derivative

2.2. Statement of the problem

2.3. ?onmonotone case

2.4. Monotone case

2 5. Variations

-
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1*CLOSEDNESS AND COMPACTNESS THEOREMS

1.*1.* PRELIMINARIES

Let V be a real reflexive Banach space. We denote by V the dual of V,

the pairing between V1 and V, *(reap. -~)norm (resp. weak) convergence in V

or V.

DEFINITIONS 1.1. Let Tn , n 1,2.... and T be mappings from V to V'. We say

that T n P T when Mi the Tn'a are equibounded (i.e. U Tn()is bounded in V-

whenever B is bounded in V), (ii) for each sequence k n + -, un -- u in V with

T k Un - ku' in V and
n

(1.1) lim sup(T k u n' Un) (ul,u)
n

one has Tu - u' and (T ii u ) + (ul,u). we say that T k--So T when Mi holds and for
n

each sequence kn, un as above, one has Tu - u' and u1n + u in V.

These definitions are closely related to the notion of pseudo monotone homotopy which

is used in the study of some strongly nonlinear problems (see [5,9,10]).

We recall that a sequence of sets Kn C V is said to converge in the Mosco sense to a

set K C V (briefly K n-. K) when

s-lrn inf Y. - w-lim sup K ,

where

s-lim inf K - {v e VY there exist v e K with v + v}

w-lim inf Kn - (v e V; there exist k + -and v e Nk with V v\;

(see [191).

One then has the following simple result concerning the converaence Of

variational inequalities (see e.g. [14]).

THEOREM 1.2. Let Km and K be closed convex sets in V with K - K. .e-Pr

and T he mappings from V to V with T PM T. Let u' *u' in.W ~i. '
- n n - _ __

un satisfies
In



(1.2)T u u V) 4; (u~u -v for allveK
n n n nn )v Kn

and that u n u in V. Then u satisfies

1.3) ue K,
0l.3)

(Tu,u - v) 4 (u',u - v) for all v e K

S
and (T u ,u ) + (Tu,u). If moreover T -+ T, then u * u in V.n n n n - n -

PROOF. Passing to a subsecuence, one can assume Tn u n u'. Since u e K, there

exists wn e Kn  with wn + u; replacing in (1.2), we obtain

lir sup(TnU ,n u (u',u)

so that, by the convergence property of Tn, Tu u' and (TnUn,Un ) + <Tu,t ). Let now

v e K. Taking vn e Kn  with vn + v and replacing in (1.2), we get (1.3). Q.E.D.

1.2. CLOSEDNESS THEOREMS

We now give sufficient conditions for a sequence of mappings Tn  associated with

operators of the form (0.8) to converge in the above sense.

Consider, on a bounded open set 0 of RN  for which the Sobolev imbedding theorem

holds, the operators

(1.4) L u E (-1) lID A (x,u,Vu ....' Vu), n = 1,2.

(1.5) Lu - (-I) l0 A (x,u,Vu,...,V
m u)

a -C

I. le will iake the followiing as.irmptions, denoting as usual by a = ( ) (resp.

r,= n ) ) the top (resp. lower) order part of a vector t =
'I IrAI(.'r L fI <m:

each ftinction A n(x,F) and A (x, ) satisfies the Caratheodory conditions;

(1.7) there exist I < r < , c (x) c Lp(P.) where p' = p/(p - 1) and a ronstant

s tic h 
C c k1(x) ,

• .. .. .... ___ A ~ , I I I I IIII i I "



for a.e. x, all , all n, n, And qeiilarlv for A (x,a), la! m

(1.8) for a.e. x, all n, all n, one '-,e

(A ( I - Ar ( X, , ' ( - _I) N n

.01I=m a 1 a

for ', and sir.ilarlv, for A x,',:', af = N,

k
(1.9) for a.e. x an- al a, i kn then A n(x, n )  A (x,4)

In the case of a single --eratcr, (1.E'-{1.9 are exactly the Leray-Lions conditions

(see (16,17,4: 1 -e-Y were qeneralize recenti'v hy Landes !151. Assumption (1.9)

expresses tlhe '.er fe)-e efficents of Ln  to those of L.

Let V 1e a zicse4 suhs- sze of *'.P(i.) containing Wo'P (0), and define

T - V - V' -" -h * te a .-r-'uia
n -

TuV)= an(u,v) for u,v C V

where an(u,V; is the Dirichlet form associated to L
n:

a (u,v) = I [ A n(x,u,Vu.... Vmu)Dv ;

one similarly has T : V + V' and a(u,v) associated to L.

PMThEOREM 1.3. Assume (1.6)-(1.9). Then T ---- + T.
n

The following additional condition yielda a stronger conclusion:

'1.10) there exist d1 > 0, c1 ) 0 and 1 (X) e L1 (1) such that

An
A (Xn') ) d1 lop - c IniI- 1 x

for a.e. x, all n, ;, all n, and similarly for A (x,n,C), aml = m

Note that this condition is implied by an inequality of the form

a l<m

STHEOPEM 1.4. Assume (1.6)-(1.10). Then T - T.n

Theorem 1.3 is, up to the use of (151, a particular case of theorem 5.1 of (9) which

deals with a similar converqenr7 problem (with a parameter t e (0,11 instead of

n 1,2,...) in Orlicz-Sobolev spanes. In order to allow certain references and also to

-7-



avoid to the reader the technicalities inherent to the situation considered in [9,

(unbounded and non everywhere defined mappings, in nonreflexive spaces, ... ), we will O~ve

below the main points of the proof. The result of theorem 1.4 is related to the notion c

mapping of type (S,) which was considered by F. E. Browder in some of his works (see e.,q.

(4] ).

PROOF OF THEOREM 1.3. Let u u in V, k + -, T kU - f in V' with
n

(1.12) lim sup(Tk UUn) ( ( f,u

n
We must show that Tu = f and (T k UnU) (f,u). For brevity, we will write Tn

n
instead of Tkn.

As An( (U
1
) remains bounded in LP'(Q), we can assume, passing to a subsequence,

that An((un)) -- h in L
p 

(SI); thus

(1.13) (f,v) = I h a (x)Dav

for all v c V. We can also assume, passing to a further subsequence, that for al < it,

D) u n D u in LP(Q) and a~e, in Q. We will showa that this ate. convergence also o ,

nn

for lal = 
m. It then follows that A n((u )) + A (C(u)) ate. for all a, so that, by

a n a

lemma 1.5 below, AC (F(u)) =h , and consequently, by (1.13), Tu =I.

We first note that

(1.14) lim sup f (A n(n(un), (Un)) - A n(u (),(u)))(D u - Du) 0= a r  n a n n

tnieod the integral in (1.14) is equal t

(T ,un-) A (&(un ))Da -  An((u,)) Du

- A n((Un), (u))(D"u - 0ul
a n n

an(! since the last integral above converges to zero, (1.14) can he deluced fr,) I. 1p

(1.11). As the Lntegrand in (1.14) is ) 0 a.e. by (I.Al, it converqes to :en, r '

( .), and so, by passincl to A subsequence, a.e. in i.:

+ -93-



(1.15) : (A n(,,u ),C(u A - '(r(u ),(u)))(Dau - D au)- 0 a.e. in Q
al=m a n a n n

Fix x0 6 (a.e.) and let us show that (u )(x 0 ) remains bounded. Suppose the

contrary. Then, writing &n = (u n)(x0) and C = F(u)(x 0 ), we get, for a subsequence,

14n - C1 > I and (4 - )/ -W n* C 0; but it follows from (1.8) that

In n n

)a
n(,l Am n(n ,) n; 0(an nC + )'n Cl a (Cn a

and so we deduce from (1.15), after dividing by 11 - I, that

I (A (n,; + '1 - A (n, ))t' = 0
ll=m a

consequently, by (1.8), 4* = 0, a contradiction. We can thus assume, passing to a

subsequence (depending a priori on x0 ), that (u n)(x ) + 0 ; it then follows from

(1.15) that at x.,

A01 (A((u),;0) - A (n'4(,u) a = 0 ,

and consequently, by (1.8), ; = DaU(x0 ) for lIl = m. So (u n)(x 0 ) converges for the

original sequence to ;(u)(x 0 ). We have thus proved that for lal = m, D un  D a u a.e.

It remains to see that (Tnun,u) + (Tuu). As

f A (&(u )n )Dun + A(&(u))Dou
0 Iak~m a n laI<m

it suffices by (1.12) to show that

(1.16) lim inf I An((. ))Du n ) f I A (I(u))D'u
SaI=m a o M lal=m

But (1.8) implies

f Ia (An(n(n), ((n(un), (u)))(D u -Du) 0 ,U lal=m

and (1.16) follows by passing to the limit. Q.E.0.

i "2-9 -



LEM'MA 1.5 (cf. [16]). Let r n(x) be a bounded sequence in LP (l), 1 < p < ,with

r (x W r(x) a.e. in Q2. Then r(x) e L ( 1) and for each s(x) C 5 .() rn si

L I(Q2).

PROOF OF THEOREM 1.4. We must show, using the notations of the above proof, that if

a i a(1.10) holds, then u + u in V. It clearly suffices to see that Du+ D u in L (12)n n

for lii = m, and since we already have a.e. convergence, it is enough to prove, by Vitali

theorem, that the jI Dun are equi absolutely integrable. Let E C d. By (1.10),

f ~ I Da u I An(&( ))Du p + cD~ f (x
n~~~p~ f c a (n(x) cf

E IciI=m n E Icikm ci n n E IcI<m n E

where c denotes a constant independent of n and E. Given E > 0, one deduces from

(1.14) that there exists n C (independent of E) such that for n > n

j r . An Da )~u 4 A n(&(u ))Dau
E cij~m E f Efci=m c

+ f An hf(u ),(u)) (Daiul Dail)
E Icia Ci

but each integrand on the right hand side converges in L I(Q2), the first by lemma 1.5 and

the second by a preceding argument. The conclusion follows. Q.E.D.

REMARK 1.6. The conclusion of theorems 1.3 and 1.4 still holds if the growth

assumption (1.7) is weakened in the following way: it suffices that (i) the inequalities

in (1.7) be verified with a constant c1  and a fonction k 1 (x) possibly depending on

n, (ii) if u remains hounded in Win'p( ) andi n 1,,., then A l( iu)) remains-

bounded in L P (P2), (iii) for cii = mn, if q remains hounded in We"P(l2), v isfx-

in wmp'4 and n = 1,2,.then A a(n(u) 'Vv) ) varies in a compact set of Lin (-2). A

similar remark applies to theorem 1.9 helyv.

REMARK 1.7. Similar results, with simpler proofs, can he given whon T' "ni 1 T'A"'

monotone. Assumie (1.6), (1.7), (1.9),. an'l

(An(x,r) -A (~,)U -Y



for a.e. x, all ~,~ and all n, and similarly for A (x,t), 101 4 M. Then
a

T -a+T. Moreover if the condition
n

n a af I (A a(C(Un - A a(&(u)))(D u n- D u ) + 0

implies u + u in V (this will be the case if the coefficients An verify a strong
n a

S
monotonicity condition which is uniform with respect to n), then T n-_+ T.

EXAMPLE 1.8. Consider

L u D ~(a.(x,u)[VuI DIU) + a(,,U
n 10

Lu -- f1 a Xu),Vul- 2 Diu) + a0(~,u

n n
where 1 < p < w and the functions a i, ao' a,, a 0  satisfy the Caratheodory conditions

together with:

(1.17) there are constants A and cl, k IxW C LP (1) such that

la n(x,,) I and Ia.(x~rOI A
1 1

la n(x,ri,;fl and Ia (x,n,;)I 4 c IniI + c 1RI + k Wx

for a.e. x, all n, C, all i, n;

(1.18) for a.e. x and all 1, if k n + and (n n#4) (n, V. then
k nk n n

a n(x~fl + a i(x~rl) and a 0(xf, ) n a(M n

Let T V + V' and T :V + V' be the corresponding mappings (m I here). If for
n

a.e. x, all n, all i, n,

n
a (x,n) and a.(x,n) > 0
i1

thn M T. And if
n

a n(x,q) and a.(x,n) 0
i 1

constant) for a.e. xc, all n, all i, n, then T n . Related results in the

latter case have been obtained for p 2 by Boccardo-Dolcetta 131.

..... -1.-



1.3. COMPACTNESS THEOREM

In some applications (see section 2.3), one has a sequence of operators Ln as above

for which the lower order coefficients An, 1.1 < m, do not necessarily converge in the
Q

sense of (1.9). The following theorem yields a compactness result in this situation.

Let Ln be as in (1.4), n = 1,2,..., and let A (x,&), jai = m, be functions. We

will assume among other things:

(1.19) each function An(x,&), Jail C m, A (x,&), Jul - m satisfies the Caratheodory
aa

conditions;

(1.20) each function AP(x,&), Ii 4 m, A (x, ), Jii = m satisfies a growth condition
a Ui

such as (1.7), with a constant cI and a function kl(x) independent of n;

(1.21) for a.e. x and all jaI = m, if k + - and + , then
k n n
A an(x,n) A a(x, )

Let Tn : V + V1 be the mapping associated to Ln .

THEOREM 1.9. Assume (1.19), (1.20), (1.8), (1.10) and (1.21). If u - u in V

and T u - f in V with

lim sup(Tnuu n ) (f,u)

then u + u in V.

PROOF. The arguments are essentially the same as those in the proof of theorems 1.3

and 1.4 and we will not repeat them. Q.E.D.

L: -12-



2.* A QUASI VARIATIONAL INEQUALITY WITH OBSTACLE ON THE BOUNDARY

2.1. CONORMAL DERIVATIVE

In this section we make precise the notion of conormal derivative for an operator of

the form

N
(2.1) Lu - DA (X,uVU) + A (x,u,Vu)

on a bounded open set Si of RN with locally Lipschitzian boundary r

We assume:

(2.2) the functions A (x,0) and A 0(x,4) satisfy the Caratheodory conditions;

(2.3) there exist 1l<p < -, k I(x) e pI()and c, such that

IAi(x.,01 and JA (X,0)I 4 c jfp + k (x)

for a.e. x, all C, all i.

L is considered as a mapping from W 1p(2i) into W-1'1(i) so

<Lu,v) - a(u,v) for u e W 1'p(ai), v e w , (SI)

where a(u,v) is the Dirichiet form associated to L and (,) denotes the pairing in

the distribution sense. T : W 1 ,p(Si) + (W 
1 ,p(92))' is defined by

(Tu,v)) - a(u,v) for u and y e W 1'p(Ql) j

where (,) denotes the pairing between (W '(Qi))' and W1' Mi. We will also

denote by (,) the pairing between W 1 1 ~'(r) andW

PROPOSITION 2.1. Let X be a subspace of W-11 (Si) and ir : X *(W 1,3(Sl))' be a

linear mapping such that for f C X

1 'p
(2.4) ((rf,v))f,v) for yec W 0  (Si)

(i.e. vf is an extension of the linear form f to 1 '(SiM). Take u E 1 w1 ,p(4) with

Lu e X. Then there exists an unique element in Wdenotedby_____

that

(2.5) a(u,v) =((srLu,v )) + (y au y() v for v C W 1P(41)

where y denotes the usual trace on r. moreover (2.5) is the unique decomposition of

the form

-13-



a(u,v) ((P,v)) + (oY v) for v e W (2)

with P in the range of it and q in

PROOF. The expression

a(u,v) -(( rLu,v)) for v e W (SI)

depends only, and continuously, on the trace y
,  

(use a -iqht inverse of Yn). This

implies the existence of y u and its uniqueness. The last nart of the proposition
a

follows easily from (2.4). Q.R.D.

If for f smooth in X, one has

(2.6) ((sf,v)) = fv for v e W 'D(r),

2i

then it is rather natural to call (2.5) the Green's formula associated to the extension

mapping Tr.

FXAMPLE 2.2. Take X = L
p ' 

() and define 7 by formula (2.r). I.'e then write

(f,v) instead of <.(f,v)). Formula (2.5) becomes, for u e W
1
'D(2) with Lu f L ('(.

(2.7) a(u,v) = (Lu,v) + (YaU,Ynv) for v e W
1
'r(2)

EXAMPLE 2.3. Denote by () C W- (2) the set of all restrictions to W ( )

of the positive continuous linear forms on WV If(q), and write -,) -+ (2)

This space has been introduced and studied for n = 2 by Hannouzet-Jolv ill] in rplation

with the interpretation of solutions of some variational in'iqslities. c0 mp of thoir

results extend easilv to the care p * 2, as remarked in E5i. In nartiular onn can

define an extension manninon T ' (-)r,(2) * (T (7 )1' which verifies ('.) 1v writinn, for

f 1 (0() and v f ), v 0 n a..,
1,0

(2.P) (tf,v)) = sun{( C,w); w C W () anl 0 ' w . v a. .

Flr I linear with smooth coeffirients, HanoI17#t-Joly ijroved that y iefjnea "' (2.) 1y

ilsino hi f f is the continlous extension tho lisual conoral -iprivativc operaTor (n.5)

con (2, n flnnt 1-,s, er: the ,r' Iiin of r (i.. the set lofe:

cont lois 1i i near forms), ne ,n t-- Fol I owi nn strict. i niions:



1-P0 , () C (W 'P(a)). C (W"'() , and i 0 p('6) C (W'P(P)) C (W''P(0))'; moreover00p

LP,(,I) C ( W) strictly, and (2.6) holds for f e LP (Q). See (11,8].
p

In the following we will use the extension mapping of example 2.2. The more general

result obtained by considering the extension mapping of example 2.3 will be mentioned in

section 2.5.d.

2.2. STATEMENT OF THE PROBLEM

We now start the study of problem (0.1)-(0.4) itself, with T of the form (0.6). The

case of the obstacle (0.7) will be treated in section 2.5.a.

Let L be given 1- (2.1), with coefficients satisfying (2.2) and (2.3). The

functions h and ; are given in W - I/p'P(r) and we consider, for w e W 'Cd) with

Lw C Lp (S), the obstacle

(2.9) T (w) = h - (Yaw, )

where y aw is defined by (2.7). Let

(2.10) Q(w) = {vf W (1'P2); y 0v T V(w) a.e. on ri

be the corresponding closed convex set. We are also given f in LP(6).

For u 6 W1 'P (2), equation (0.1) is interpretated in the distribution sense in 0,

condition (0.2) as y0 u > 7(u) a.e. on r, condition (0.3) in the sense of the dual of

W -I/p'P(r), and condition (0.4) as ( yy (u - (u))) = 0. Then one easily verifies

that stated in this way, the problem of finding uE W 1'P() verifying (0.1)-(0.4) is

equivalent to solving the quasi variational inequality

u EW W'P(C) with Lu e LP'(1)

(2.11) u E Q(u)

((Tuu - v)) ( (fu - v) for all v C Q(u)

Examples can easily be constructed (for N = I and Lu -u" + u) which show that

this problem may have no, one, two or infinitely many solutions.

2.3. NONMONOTONE CASE

It will be useful (see example 2.11 below) to distinquish in the coefficient

A (x,u,'7,) a dependence on u which yields monotonicity and coercivity from one of

MA



perturbation type. We write for this purpose Ao(xu,u,Vu) instead of Ao(x,u,Vu), so

that the operator L becomes

N

LU D - A D lxu,Vu) + A0 (x,u,u,Vu)

We will make the following assumptions (compare with the standard Leray-Lions

conditions):

(2.12) each function A i(x,&) and A0 (Xnln P2 ,r) satisfies the Caratheodory conditions;

(2.13) there exists 1 < p < -, k2 (x) C LPt () and a constant c2  such that

JA (xv.,)I ( c214P-1 + k2 x) ,

fA0 (x,n,ln2 ,')f 4 ¢2(nlc
p 
1  + k2 (x)

for a.e. x, all n, f ln '2P C' all i;

(2.14) for a.e. x, all n,

N

((A (x,n,;) - A i(x,n,;,))(C- > 0

if 4 * '; for a.e. x, all n', n' n 2'

(Ao(X,n,,n2,;) - Ao(X,n- TI) 2 0i

(2.15) there exist d2 > 0 and t2(x) C L (Q) such that

N
SA i(x,n,C)C I d 2 ICIP - t2 (x)

i=1

Ao (x,lfn2# Onl I d 2 nIn p 
- L2 x) 

for a.e. x, all n, fl, nV 2' 

THEOREM 2.4. Let the conditions (2.12)-(2.15) be satisfied, and let h anA he

given in W1-1/P'P(r), f in LP (). Then problem (2.11) has a solution when either

< p < 2 or p 0 2 and NIS is sufficiently small (depending on . h,

f and th- various constants and functions in (2.13) and (2.15)).

A- 1-



PROOF. Let us write, for X e R,

QX - {v e Wep(Q); y0v h - X a.e. on r}

and for w e W 1'P(),

N

L w(u) E- I D Ai(x,w,Vu) + A0 (x,u,w,Vw)i-I

and let Tw : W'P (a) + (W1'P ())' be the mapping corresponding to Lw. By (2.12)-

(2.15), Tw  is monotone, continuous and coercive, so that the variational inequality

(2.16) 
U u QX I

I (( Twu,u - v)) 4 ( f,u - v ) for all v e Q

has solutions. Defining

(A,w) {((y u,P),u)g u solution of (2.16)) C R x w'P(1)
w

where Ya denotes the conormal derivative associated to Lw, we are reduced to finding a
w

fixed point of the multivalued mapping (A,w) + 8(A,w) in R x 1'P(a).

O(A,w) is closed and convex. Indeed the set of solutions of (2.16) is closed,

convex, and if ul and u2 are two such solutions, then (2.14) implies that VuI = Vu2 ,

so that, using (2.7) for Lw, we see that Ya (u1) - a (u2 ).

- w 1-1/,'n 1'P
A priori estimate. Denote by v + v, from W (r) into W (), a right

inverse of the trace mapping Y0. Let ) 0 and let u be a solution of (2.16) wit'

A ) - and w e 1'P(f(). Then, if we put v - h - (-) in (2.16), we deduce from (2.11'

and (2.15) that

d Su3l' 4 c + coutp-1 + C1I1uNS 1 + CHUN + JA
2 11 1 0 S1

where c denotes various constants independent of u, A, A and w, and D 6, denotps

the norm in W 1 'p(Q). Consequently

(2.17) out S c! + C

so that, using (2.7) for Lw and (2.13),
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(2.18) IIYa uh' 4 cIP- 1 
+ c

w

where U Ure denotes the norm in W- 
1
-
1
/p)'W(r). Thus 6 transforms

[-A, +.[x WI'P(2) into a bounded set. Moreover, since ya u is a positive element of
1-1/ w

the dual of W (r) (this follows from (2.16) by taking v = u + z with

z e W 1"/P'p(r), z ) 0 a.e. on ., and using (2.7) for Lw), we deduce from (2.18) that

( Yau ;) O -(cu1 ) + c2)I II r
w

where we have written = - - and denoted by II U the norm in WI-I/p'P(r).

Consequently, if 1 < p < 2, then, p being given, there exists A such that

(Ya u,,) ) -. Such a A also exists when p ) 2 provided U-II1r  is sufficiently

w
small:

1-p 11 r max A/(c
1AP-1 + c2 ) 

In any case we have found A ) 0 and R > 0 such that 6 transforms [-X,R] x B into

ifself, where B. denotes the closed ball centered at zero of radius P in w 'P(1).

6 transforms a bounded set into a relatively compact set. Indeed, let A n A and
0

w - w in w
1
'P(a), and let un be a corresponding solution of (2.16):

Un  e QX I

n

((T w (Un ),U n  - v)) < (fu n  - v) for all v e QX
n n

where Twn is associated to the operator

'Z

,w (u) D P (Y,w n(x),l1) + An(xi,W n(x),Vw Cx))

heoe ota, n i=1

A One immediately has 0, - A . moreover un  remains hounded in W ' C ), as seen

before, an that, passinq to a suhOv~uence, we can ansume u - n in ' W ) and,

1 
n,,e

using (2.13), T W(u n i~ in (Q )) 14P first 1inducp u c 0) , and then the
w
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existence of V e with v * U; replacing in (2.19) and going to the limit, we
n

obtain

lrm sup((T w (un ),u 11 ( ((g,u))
n

We can now apply theorem 1.9 (after passing to a further subsequence to have w n w a.e.)n

and conclude that u + u in W'(2).n

Let us write C = cl cony 6([-!,R] x B R). C is convex, compact, and O(C) C C. In

order to apply Kakutani's theorem and thus complete the proof, we must verify that the

graph of 0 is closed. Let X +A, w + w in W 1'P(), and let un  be a solution of9 . n n

(2.19) with u + u in WI'p(2) and r =<y (un),.) + r. As above, Q M + QX.
w n

Moreover, passing to a subsequence so that w n w and Vw + Vw a.e., we deduce fromn n

theorem 1.4 that T - T . It then follows from theorem 1.2 that u satisfiesw wn

(2.16). Finally (2.7) implies that ya (un) + Ya (u) in W - !/)P(r), and
V wn

consequently r = (y a (u), ). Q.E.D.
w

EXAMPLE 2.5. The assumptions of theorem 2.4 are satisfied by the operator

Lu - i D(a.(X,U)Vul p-2D iu) + a 0(x,u,Vu)lulP-2u

if the functions ai  and a0  verify the Caratheodory conditions together with

0 < A 4 a.(x,n) 4 A1

0 < A < a (x,n,) 4 A

for some constants X and A, a.e. x, all n, C, all i.

7 2.4. MONOTONE CASE

We suppose now that L, given by (2.1), satisfies (2.2), (2.3), and

(2.20) for a.e. x, all , ',

N
[ (A (x, - A(x, '))( i  - + (A n(x,) - Ao(x,')'l(n - n') ) 0

-1')-



(2.21) there exist d2 > 0 and .2(x) E L (SI) such that

N

A i + A0(x, )f ) d2 IUP - t 2Cx
i=1

for a.e. x, all .

THEOREM 2.6. Assume (2.2), (2.3), (2.20) and (2.21), let h,p e WI-'/P'p(r),

f E L (1'2). Then the conclusion of theorem 2.4 holds.

PROOF. Define QA as before and consider the variational inequality

(2.22) { u QA

(.Tu2u - v)) 4 (f,u - v) for all v e

writing

0(A) = {(Ya u,); u solution of (2.22)} C R

we are reduced to finding a fixed point of the multivalued mapping A + 6(A) in R. The

arguments are rather similar to those in the proof of theorem 2.4, but simpler, and we will

not describe them any furbter. Let us just mention that the convexity of S(A) follows

from the fact that since ya is continuous on the (convex) set of solutions of (2.22),

{y au; u solution of (2.22)1 C W-(1-1/P)''(r)

is connected. Q.E.D.

REMARK 2.7. Assume (2.2), (2.3), (2.20) or (2.23), and (2.21), where:

(2.23) for a.e. x, all n,

N
(Alx,)- Ai~~,')¢ [ > 0

ifi=

Let uA be a solution of (2.22). Then Yau 0 in as X

consequently 0(A) + 0 as A r +). Indeed, for a subsequence, u, u in W

and TU " in (W ))W. Taking vA C with v * u (P.q.
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v= sup(u,h - A)) and replacing in (2.22), we obtain

lim sup((Tu,,uA)> ' ((q,u>>

and consequently, by the pseudo-monotonicity of T, q - Tu and ((TuA,uA)) + ((Tu,u)).

Take now any v e W1 '(n), and v~ xeQx with + v; replacing again in (2.22), we

deduce

((Tu,v)) = (f,v)

so that y au = 0. But by (2.7), yauA X y u in W-( p () It thus follows

that, without passing to any subsequence, YaU X -0.

EXAMPLE 2.8. The assumptions of theorem 2.6 (as well as those of theorem 2.4) are

verified in the linear case

N D i(a (xD Ju) + a u
i. ij 0

where a and a are in L(0) and satisfy the uniform ellipticity condition

we aalJ(xK i 2
li,J=l

together with

a0 (x) A

X a strictly positive constant. Theorem 2.6 thus includes the results of (12,20,21

referred to in the introduction.

2.5. VARIATIONS

a. Consider the obstacle (0.7), or more generally an obstacle of the form

(2.24) 1(u) = h(x) - [+(y au) - 0-(y u)]

where he W 1-1/p,p() and o are mappinos from V7-1) into W 1-1/ 'I".

aSSume continnous, compact, positive (i.e. €t(o ) 0 a.e. on - when o iq i
1- ,n[/p !

positive element of the dual of W 1- )), with an estimate of the forrn

0 A



We look for a solution u of (2.11), where f e L p(0) and ONw) is defined by (2.10),

T being now given by (2.24). Then, under the assumptions (2.12)-(2.153), this problem has

a solution when either a(p - 1) < 1 or o(p - 1) > 1 and a I is sufficiently small.

The proof of theorem 2.4 can be adapted to this situation. One replaces by by

where is defined for t C W1 1  (rU) by

1,r0
(V 6 W (P) y0 v )h-£a.e. on I

the mapping e now operates in W (r Q.one also has an analogous result

in the monotone case, i.e. under the assumptions (2.2), (2.3). (2.20) and (2.21). However

here we are led to impose the strict monotonicity in (2.20) in order to guarantee that 0)

is convex valued.

b. The method of sections 2.3 and 2.4 can also be applied to the situation where r

is composed of two parts 1 andi r 2separated by a third part P 3and one requires

(0.2)-(0.4) on F,(0.2)-(0.4) with reverse inequality signs on r 2 , and the Neumann

boundary condition on r 3' In the language of fluid mechanics, one has a pipe with a semi-

3F

r2

4; Sianorinl prohlo'-is of' this tvr'e, with nbstarleq whirch An not dppnd on the oliut ion, w(er.

considered! rpcriay hy Yawohl (131.



c. As remarked in the introduction, the obstacle (2.9) is not defined for an

arbitrary w E W 1'P(). One way of avoiding talking about Y(w) unless Lw e LP (i) is

described in sections 2.3 and 2.4. Here is another possibility. Write, for w e w

=h - (w~)+ ( f,-,

P(w) (v e W (0; yov > T(w) a.e. on r,

and consider the problem of finding u solution of the quasi variational inequality

u e w
1
'P(0)

(2.25) u e P(u)

((Tu,u - v)) ( (f,u - v) for all v e P(u)

Problems (2.11) and (2.25) are equivalent because, by (2.7), P(w) and Q(w) coincide

when w e W I'P (2) verifies Lw = f. Formulation (2.25) allows a more traditional

approach, by defining (in, say, the nonmonotone case) the variational selection 8(w),

1 ,p
w C (a), as the set of all solutions u of the variational inequality

I u e P(w),

((Tw u,u - v>) 4 (f,u - v) for all v e P(w)

The results for (2.11) that we have obtained along these lines are however weaker than

those in sections 2.3 and 2.4. But the above approach has proved useful in other similar

problems.

d. By using in (2.9) the conormal derivative corresponding to the extension mapping

w of example 2.3, one can get the conclusion of theorems 2.4 and 2.6 for a right hand

side f in (4 Gl). more precisely, for h and ' in W
1
-
1
/p'p(r), f in p (Q), the

problem of lmnding u verifying

U C W I'p (Q) with Lu f NE w)

(2.26) u f Q(U)

,( TU,i - v)) (if,u -" v)) for all v c Q(x)

has a solution when either I < p < 2 or p 0 2 and N' is sufficiently small. Note

that (2.26) can still he shown to be in this morp general situation equivalent to (0.1)-

(0.4), see (9].
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F e. Coming back to the heat flow problem described in the introduction, we see th at

the s 1(uVu) term represents in our results some cooling effect inside jz (e.g.

s1 (u,Vu) = -Jl u.The need for such a term is physically understandable since no

restriction has been imposed on the forcing term s2 (x) . The case s, 0 will be stulie,

elsewhere.

f. We conclude with a regularity result in the case where L is of the form

N p-2 i (lp- 2 u
Lu E I D'(a.(x)IVuIl D u) + a ()u

p.., 1 0

Assume r' of class C'3, a. if W ((), ae L(&), ai(x) and aW A>0

h f W 1 1 1p~p(r), P e wl11 P'() and f e W 1/p.p (Q). It then follows from proposition

3 in (81 that any solution u of (2.11) satisfies

1+1 /n(n-1)op
U 4E B "(Q) if 2 < p < p

u 6 l+(P-l)/P.P(Q) if .2< p < 2

where p and k are given by

- 3 -2
(p-i1) -p= 0= (P -1) P- 1

and where B~ pt) a >0 different from an integer, 1 (p < ~,1~ q is the Resov
q

space defined by interpolation:

a ICY

+ aC

3.e
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